Mechanism for N₂O Formation from NO at Ambient Temperature

Jinsheng Wang, Lufei Jia, and Edward J. Anthony

CANMET Energy Technology Centre, Natural Resources Canada, Ottawa, Ontario, K1A 1M1 Canada

 N_2O was reported to form in sample containers of flue gases containing NO and SO_2 . This could have significant implications for the evaluation of N_2O buildup in the atmosphere. Existing models are based either on liquid-phase reactions, which cannot account for N_2O formation at low humidity, or on termolecular reactions, which are not likely to occur at low concentrations. In this work, we propose mechanisms for N_2O formation based on gas-phase reactions, which address the effect of SO_2 , O_2 , and moisture. Analytical expressions of the formation rate were derived and compared to reported rates, and rate constants were estimated for limiting cases. The current analyses suggest that N_2O_2 could be an important precursor for N_2O formation from NO, and the mechanism may be important for N_2O formation in power-plant plumes.

Introduction

AIChE Journal

 N_2O is a powerful greenhouse gas, and can also cause depletion of stratospheric ozone. The concentration of N_2O in the atmosphere has been increasing at a rate of about 0.2% per year. Several past studies concluded that anthropogenic sources, including emissions from combustion systems, might be large enough to account for the observed increase of atmospheric N_2O (Weiss, 1981; Lyon et al., 1989; Muzio and Kramlich, 1988).

Muzio and Kramlich (1988) investigated the effects of fuel nitrogen and sulfur on N_2O formation. They showed unequivocally that N_2O formed in flue-gas sample vessels containing NO, SO_2 , O_2 , and H_2O . This finding had significant implications, as previous projections of the importance of fossil-fuel combustion on atmospheric N_2O buildup were largely based on batch measurements of flue gases stored in containers. Since N_2O forms in such sample containers, the formation attributed to combustion could be greatly overestimated (Lyon et al., 1989; Muzio and Kramlich, 1988). However, this finding also suggests that N_2O could form in postcombustion flue gases, since the components just mentioned coexist in power-plant plumes, and hence significant amount of N_2O might be expected to form in such plumes (Khalil and Rasmussen, 1992; Linak et al., 1990).

Lyon and Cole (1989) suggested that the formation of N_2O requires liquid-phase reactions, and this view was also supported by Muzio et al. (1989). Pires and Rossi modified Lyon

and Cole's model, but maintained the necessity of liquid-phase reaction (Pires and Rossi, 1997). For cases without the presence of a liquid phase, it was suggested that the reaction would take place in thin water film formed on polar surfaces. However, such models do not predict any N_2O formation in the absence of water, which was observed in several studies (Muzio and Kramlich, 1988; de Soete, 1988a; Preto et al., 1999), and might serve as a stratospheric source of N_2O (de Soete, 1988b). Moreover, the hypothesis that liquid water must be present is not likely to explain N_2O formation under low-humidity conditions, since the amount of liquid under such conditions is probably too small for significant liquid-phase reactions.

In previous experiments at the CANMET Energy Technology Centre (CETC) gas mixtures of N_2 , O_2 , NO, and SO_2 were used to simulate power-plant plumes, while varying the moisture content. Experimental details are given elsewhere (Preto et al., 1999). It was found that N_2O formed in effectively dry mixtures with low NO and SO_2 concentrations. With 5% relative humidity (RH) the reaction rate tripled, whereas above this RH level the humidity effect was not significant (Figure 1). These results strongly suggest N_2O formation from gas-phase reactions.

 N_2O is known to form from the disproportionation reaction of NO (Greenwood and Earnshaw, 1989; Martin et al., 1981)

$$3NO = N_2O + NO_2. \tag{1}$$

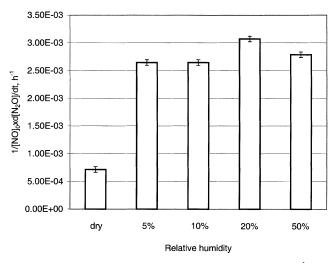


Figure 1. Dependence of formation rate of N₂O (normalized with initial NO concentration) on relative humidity.

Experimental conditions: $[NO]_0 = [SO_2]_0 = 50 \text{ ppm}; [O_2]_0 = 10.5\%$; $T = 25^{\circ}\text{C}$. All methods were the same as those reported by Preto et al. (1999).

Muzio and Kramlich (1988) reported that 3 ppm N_2O formed in an "artificial flue gas" containing N_2 , O_2 , CO_2 , and 600 ppm NO in a period of 2 h, which may be attributed to this reaction (see later discussions). However, when SO_2 was present, the formation rate was much higher, indicating that a reaction pathway involving SO_2 was dominant.

The following mechanism for N₂O formation from dry gas mixtures has been proposed by de Soete (1988a)

$$2NO + SO_2 = N_2O + SO_3$$
 (2)

$$NO + SO_3 = NO_2 + SO_2.$$
 (3)

Reaction 2 (Eq. 2) is third-order, and hence is most likely to be a global reaction rather than a genuine termolecular reaction, especially at low reactant concentrations. This viewpoint is supported by CETC experiments, which showed that N_2O was formed at 10 ppm NO and SO_2 concentrations, which seem to be too low for an effective termolecular reaction. Accordingly, Eq. 2 does not give information that can give rise to a rate expression. Moreover, Eq. 2 does not reflect the effect of O_2 , which was also found to influence N_2O formation. Finally, reaction 3 (Eq. 3) would most likely be overwhelmed by its reverse reaction, because the equilibrium constant is small $(5.8 \times 10^{-7}$ at $25^{\circ}C$).

Based on the preceding considerations, we propose an alternative mechanism for N₂O formation via gas-phase reactions, which will account for the observed behavior of both dry-gas and humid-gas cases.

Mechanisms and Discussions

N_2O formation from dry mixtures of NO and SO,

First, for the dry mixtures of NO and SO_2 , we considered the following reactions.

$$2NO = N_2O_2 K_4 = 1.5 \times 10^{-6} (4)$$

$$N_2O_2 + SO_2 = N_2O + SO_3$$
 $K_5 = 2.2 \times 10^{30}$, (5)

where K denotes the equilibrium constant (in terms of partial pressures) at 25°C, obtained from the thermochemical software package HSC Chemistry. Reaction 4 (Eq. 4), along with the reaction

$$N_2O_2 + O_2 = 2NO_2$$
 $K_6 = 1.1 \times 10^{19}$ (6)

was proposed for gas-phase oxidation of NO (Greenwood and Earnshaw, 1989; Atkins, 1998), which is believed to proceed by a termolecular reaction

$$2NO + O_2 = 2NO_2.$$
 (7)

Reaction 7 (Eq. 7) is also included in the models of Lyon and Cole (1989) and Pires and Rossi (1997), for N_2O formation via heterogeneous reactions. However, given that the reaction rate is known to decrease with increasing temperature, this suggests a complex reaction mechanism. With Eqs. 4 and 6, the observed reaction order and temperature dependence can be explained (Atkins, 1998). This mechanism is important for the present case because the intermediate N_2O_2 might be a precursor of N_2O when SO_2 is present, and it gives Eq. 2 as an overall reaction.

With a pseudo-steady-state hypothesis for N_2O_2 (see the Appendix), the formation rate of N_2O can be derived from Eqs. 4 and 5 as

$$\frac{d[N_2O]}{dt} = \frac{k_4 k_5 [NO]^2 [SO_2]}{k_{-4} + k_5 [SO_2]}.$$
 (8)

Hence, the formation rate of N_2O is expected to be proportional to the square of the NO concentration. The second-order dependence on NO concentration was observed with the presence of condensed water (Pires and Rossi, 1997), and a global aqueous-phase reaction

$$2NO + SO_2(aq) + H_2O = N_2O + H_2SO_4,$$
 (9)

was proposed for the N_2O formation. However, it is easy to show that Eq. 9 conforms to the mechanism we have proposed. At low humidity there is no dissolved SO_2 , and by combining Eqs. 4 and 5 with the reaction

$$SO_3 + H_2O(g) = H_2SO_4,$$
 (10)

one obtains a global reaction with the same form as Eq. 9. The only difference is that NO is considered to react with gaseous SO_2 rather than dissolved SO_2 . Moreover, when SO_2 concentration is low, so that $k_5[N_2O_2][SO_2] \ll k_{-4}[N_2O_2]$ or $k_5[SO_2] \ll k_{-4}$ for Eqs. 4 and 5, from Eq. 8 one gets

$$\frac{d[N_2O]}{dt} \approx K_{4c}k_5[NO]^2[SO_2], \tag{11}$$

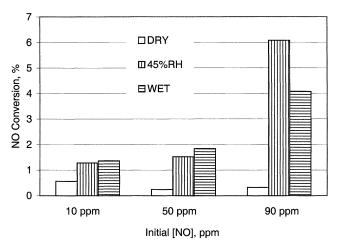


Figure 2. Effect of relative humidity and initial NO concentration on conversion of NO (median values after 4 h).

The experiments are described by Preto et al. (1999). In the case of the wet conditions, water was sprayed directly into the reactor.

where $K_{4c} = k_4/k_{-4}$ is the equilibrium constant for Eq. 4 in terms of concentration, and can be calculated from the partial-pressure-based K_4 . While Eq. 11 is third-order, when $k_5[SO_2] \gg k_{-4}$, Eq. 8 reduces to

$$\frac{d[N_2O]}{dt} \approx k_4[NO]^2.$$
 (12)

That is, under such conditions the formation rate is independent of SO_2 concentration. However, both Eqs. 11 and 12 suggest second-order dependence of the rate on NO concentration.

The rate constant for Eq. 9 was reported to be 1.3×10^{-7} ppm⁻²·h⁻¹ (Pires and Rossi, 1997). Although this constant was measured in the presence of a condensed water phase, and the actual concentrations of NO and SO₂ were not given, we can still make use of this value. As noted earlier, once water is present, the actual amount did not affect the formation rate of N₂O (de Soete, 1988a). Furthermore, the formation rate was not enhanced by the presence of condensed water (Figure 2), as was also observed in the CETC study (Preto et al., 1999). One interpretation of this behavior could be that N₂O forms mostly via reactions 4 and 5, regardless of the extent of moisture. The difference between the formation rates in dry gases and wet gases can be related to the effect of oxygen, which will be discussed later. Accordingly, we can estimate the rate constants for Eq. 8 using the reported apparent rate constant. Assuming that Eq. 11 is applicable, we obtain $k_5 = 8.7 \times 10^4 \text{ ppm}^{-1} \cdot \text{h}^{-1} \text{ or } 5.4 \times 10^{11} \text{cm}^3 \cdot \text{mol}^{-1}$. s⁻¹. Moreover, using Eq. 11 and the reported rate constant, we calculated N₂O formation for dry mixtures of NO and SO₂, and compared it with our experimental result. The calculated value is lower by about one third, which suggests that the formation rate in a mixture with condensed water is not higher than in the dry gas, when O_2 is not present.

Effect of O_2 and moisture on N_2O formation

Next we consider the effect of O_2 . When O_2 concentration is high, we envisage the following pathway for N_2O formation:

$$NO + O_2 = NO_3$$
 $K_{13} = 6.9 \times 10^{-6}$ (13)

$$NO_3 + NO = N_2O_4$$
 $K_{14} = 2.4 \times 10^{18}$ (14)

$$N_2O_4 + SO_2 = N_2O_3 + SO_3$$
 $K_{15} = 1.3 \times 10^5$ (15)

$$N_2O_3 + SO_2 = N_2O_2 + SO_3$$
 $K_{16} = 4.9$ (16)

$$N_2O_2 + SO_2 = N_2O + SO_3$$
 $K_5 = 2.2 \times 10^{30}$. (5)

Reaction 13 (Eq. 13) was proposed along with the following reaction,

$$NO_3 + NO = 2NO_2$$
 $K_{17} = 3.5 \times 10^{17}$, (17)

as a mechanism for Eq. 7 (Greenwood and Earnshaw, 1989; Atkins, 1998). Equation 14 assumes that at least a part of NO_3 and NO form the intermediate N_2O_4 first, and then dissociate into NO_2 . Here the intermediate may not be identical to the thermodynamically stable nitrogen tetroxide, which is known to be in equilibrium with NO_2 at ambient temperature (Greenwood and Earnshaw, 1989). This intermediate would then be reduced by SO_2 to form N_2O , via Eqs. 15, 16, and 5. In addition to Eq. 14, the following reaction for N_2O_4 formation is possible

$$N_2O_2 + O_2 = N_2O_4$$
 $K_{18} = 1.1 \times 10^{19}$ (18)

However, with this pathway O_2 is not expected to enhance the N_2O formation rate, since it reduces the concentration of N_2O_2 , the proposed precursor of N_2O . If the formation of N_2O_2 via Eqs. 13 to 16 parallels Eq. 4, O_2 would enhance the formation of N_2O . However, in dry gases the formation rate may decline quickly as the side product SO_3 builds up—nitrogen oxides are well known to oxidize SO_2 to SO_3 at higher temperature, as for example, in the lead chamber process, which was used for production of sulfuric acid (Angelidis and Kruse, 2001)—and this would lead to an increasing influence of the reverse reactions, according to Eqs. 15 and 16 (particularly Eq. 16). As a result, the unstable N_2O_3 and N_2O_4 decompose:

$$N_2O_3 = NO + NO_2$$
 $K_{19} = 1.9$ (19)

$$N_2O_4 = 2NO_2$$
 $K_{20} = 0.15$. (20)

This behavior would evidently be unfavorable to N_2O formation. On the other hand, once water is present, be it in the vapor phase or liquid phase, SO_3 would be removed via Eq. 10, and the forward reactions given by Eqs. 15 and 16 thus could be enhanced greatly and contribute to N_2O formation. The effect of moisture on N_2O formation can also be explained with this mechanism, where water is taken merely as a sink of SO_3 . At $25^{\circ}C$, even with 5% RH the concentration

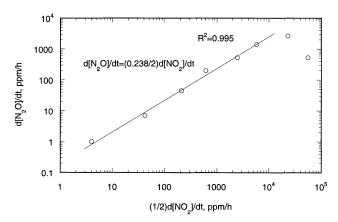


Figure 3. Correlation of initial N₂O formation rate with NO oxidation rate.

The N₂O formation rate was reported by Pires and Rossi (1997). The NO oxidation rate (NO₂ formation rate) was calculated in terms of Eq. 6, with $k_6 = 8 \times 10^9 \text{cm}^6 \cdot \text{mol}^{-2} \cdot \text{s}^{-1}$

of water molecules will be 1,500 ppm, which far exceeds the SO₂ concentration used in an earlier study (10–90 ppm) (Preto et al., 1999). Therefore it is apparent that there is enough water to absorb SO₃ and hence, increasing RH would not have a large effect. This mechanism may even account for the results of Lyon and Cole (1989) and Pires and Rossi (1997), who carried out the experiments with condensed phase and 2,000 and 3,000 ppm SO₂, respectively. At 100% RH and 25°C the concentration of water is 30,000 ppm—enough to remove all SO_3 and facilitate the gas-phase formation of N_2O . Given these assumptions, the existence of condensed water is therefore immaterial. While the liquid-phase and interface reactions proposed by Lyon and Cole (1989), Pires and Rossi (1994, 1997) and Pires et al. (1996) are quite plausible, the gas-phase reactions could contribute largely to N₂O formation, at least at lower humidity.

It is interesting to note that Pires and Rossi (1997) observed the second-order dependence of the initial rate of N₂O formation on NO concentration, although their experiments were carried out in the presence of acidic solutions. Pires and Rossi suggested that NO oxidation by O_2 is a rate-limiting step in their system. Consequently, the formation rate of N₂O would be limited by NO2 concentration. However, our calculation showed that under their experimental conditions, the gas-phase formation rate of NO2, which is the product of NO oxidation, far exceeds the formation rate of N₂O. In Figure 3 the initial formation rate of N₂O observed by Pires and Rossi is plotted against the calculated NO₂ formation rate in terms of their assumed Eq. 7, using the reported value of rate constant $k_7 = 8 \times 10^9 \text{ cm}^6 \cdot \text{mol}^{-2} \cdot \text{s}^{-1}$. It can be seen that there is a good correlation between the N2O formation rate and the calculated NO₂ formation rate below the 4×10^4 ppm/h N_2O_4 formation rate, which corresponds to 4,000 ppm [NO]₀. In this range the initial formation rate of N_2O is proportional to the calculated NO₂ formation rate. The slope of the plot, which could be interpreted as the portion of NO2 converted to N₂O, is about 0.24. Therefore, it seems unlikely that the NO₂ formation or NO oxidation is rate limiting. On the other hand, based on the gas-phase reactions we proposed earlier,

we can derive an expression for N_2O formation rate (see the Appendix)

$$\frac{d[N_2O]}{dt} = \frac{k_5 k_{14} K_{13} K_{15} [NO]^2 [O_2] [SO_2]}{k_{-4} + k_5 [SO_2]},$$
 (21)

which is second order in [NO]. The order in [SO₂] for this expression is not an integer, which agrees with the observations of Pires and Rossi, who reported an empirical value of 0.9.

It should be noted that for the sake of simplicity, in the derivation of Eq. 21 other possible reactions involving O_2 , such as Eq. 18, and N_2O formation via Eqs. 1 and 4 have not been included. This can result in overestimation of the dependence on O_2 . In fact, the dependence of N_2O formation on $[O_2]$ observed by Pires and Rossi (1997) is weaker than the first-order dependence suggested by Eq. 21.

The decrease of the N_2O formation rate in Figure 3 under high $[NO]_0$ could not be explained by the mechanism of Pires and Rossi (1997), because, as they pointed out, all possible reactions they proposed would suggest increasing N_2O formation with increasing initial [NO]. We suggest that N_2O was destroyed at high [NO] by some other gas-phase reaction.

N_2O formation without the presence of SO_2

The preceding discussions show that N_2O_2 may play an important role in N_2O formation. It may also account for N_2O formation without the presence of SO_2 . As has been mentioned earlier, Muzio and Kramlich (1988) observed that 3 ppm N_2O formed in an artificial combustion product containing N_2 , O_2 , CO_2 , and 600 ppm NO in a period of 2 h. According to these earlier discussions, other components besides NO are unlikely to contribute to the formation, and we consider the following mechanism for this system:

$$2NO = N_2O_2 \tag{4}$$

$$N_2O_2 + NO = N_2O + NO_2$$
 $K_{22} = 1.3 \times 10^{24}$. (22)

The overall reaction would be the disproportionation reaction of NO

$$3NO = N_2O + NO_2$$
 $K_1 = 1.9 \times 10^{18}$, (1)

which has been observed at high pressures (Greenwood and Earnshaw, 1989). Using the result of Muzio and Kramlich, we can estimate the reaction rate. Similarly to the derivation of Eq. 8, with the pseudo-steady-state hypothesis for N_2O_2 we obtain

$$\frac{d[N_2O]}{dt} = \frac{k_4 k_{22} [NO]^3}{k_{-4} + k_{22} [NO]}$$
 (23)

from Eqs. 4 and 22. Since [NO] is low and the N₂O formation

rate is low, we assume that $k_{22}[NO] \ll k_{-4}$, and then

$$\frac{d[N_2O]}{dt} \approx K_{4c} k_{22} [NO]^3.$$
 (24)

Thus, the overall reaction 1 (Eq. 1) would appear to be third-order. With the relation $[NO] = ([NO]_0 - 3[N_2O])$, one gets

$$[N_2O] = \frac{1}{3}[NO]_0 \left(1 - \frac{1}{\sqrt{1 + 6K_{4c}k_{22}[NO]_0^2 t}}\right)$$
 (25)

from Eq. 24. With $[NO]_0 = 600$ ppm, t = 2 h (Muzio and Kramlich, 1988) and $K_{4c} = K_4/10^6 = 1.5 \times 10^{-12}$ ppm $^{-1}$, from Eq. 25 we obtain $k_{22} = 4.7 \times 10^3$ ppm $^{-1} \cdot h^{-1}$ or 2.9×10^{10} cm $^3 \cdot mol^{-1} \cdot s^{-1}$. This value is about 1/20 of the rate-constant value that we estimated for reaction 5. As a consequence, for a mixture containing NO and SO_2 , N_2O would be formed predominantly via the reaction of N_2O_2 with SO_2 , unless $[NO]_0$ is much higher than $[SO_2]_0$.

When O_2 is present, N_2O_2 may still be important, as can be seen from the discussion of Eqs. 13–16 for the N_2O formation route. Theoretical studies have predicted several N_2O_2 isomers that have asymmetric structures (Chaban et al., 1997; Nguyen et al., 1993, 1994). One of them has a particularly unstable structure N–N–O–O. It is easy to envisage the following scheme for N_2O formation

$$N-N-O-O + S \bigvee_{O} \rightarrow N-N-O + O - S \bigvee_{O}$$

If a large portion of such unstable N_2O_2 isomers are formed as a result of Eqs. 13–16, the formation rate of N_2O would increase substantially.

Temperature dependence of N_2O formation

 N_2O formation from dry mixtures of NO and SO_2 at 125°C was reported previously (Preto et al., 1999). The data show that the formation rate is about 1.5 times higher than the rate at 25°C. With Eq. 11 we can estimate the activation energy for k_5 . The value of K_{4c} at 125°C is calculated by the HSC Chemistry software to be 0.36 of the value at 25°C. Accordingly, the activation energy in terms of the Arrhenius equation is calculated to be 14.2 kJ/mol. Moreover, based on the preceding data, the apparent activation energy for the overall reaction of N_2O formation (represented by Eq. 2) is only about 4 kJ/mol. A weak temperature dependence for N_2O formation was also suggested by experimental data in the range of 800-1,000°C for the selective noncatalytic reduction of NO (SNR) with injection of NH₃ (Hulgaard and Dam-Johansen, 1992).

This weak temperature dependence implies that N_2O formation by the discussed mechanism would be more significant for flue gases in the plume than in the stack, because

their residence time in the stack is relatively short, whereas the time for the reactants to exist in significant concentrations in a plume is much longer (Karamchandani et al., 2000).

Conclusions

The mechanism based on gas-phase reactions can account for N_2O formation in dry or low-humidity mixtures of NO, SO_2 , and O_2 . N_2O_2 could be an important precursor of N_2O . It would react with NO and SO_2 to form N_2O , but the reaction rate would be much faster with SO_2 . The effect of O_2 would be important only when SO_2 and water are present. Since it was observed that condensed water did not increase N_2O formation significantly, gas-phase reactions may contribute largely to the formation, and the mechanism we proposed might also be operative in the systems with high humidity or condensed water.

Literature Cited

Angelidis, T. N., and N. Kruse, "Promotional Effect of SO₂ on the Selective Catalytic Reduction of NO_x with Propane/Propene over Ag/y-Al₂O₃," *Appl. Catal. B: Environ.*, **34**, 201 (2001).

Ag/γ-Al₂O₃," Appl. Catal. B: Environ., 34, 201 (2001). Atkins, P. W., The Elements of Physical Chemistry, 2nd ed., Oxford University Press, Oxford (1998).

Chaban, G., M. S. Gordon, and K. A. Nguyen, "Potential Energy Surfaces for Dissociation Reactions of High-Energy Isomers of N₂O₂," *J. Phys. Chem. A*, **101**, 4283 (1997).

De Soete, G. G., "Parametric Study of N₂O from Sulphur Oxides and Nitric Oxide During Storage of Flue Gas Samples," Report No. 36 732, Institut Français du Pétrole, Rueil-Malmaison Cedex, France (1988a).

De Soete, G. G., "The Nitrous Oxide Problem," Seminar at Helsinki Univ., Finland. Available as NTIS PB89128268 from Natl. Technolo. Inf. Serv., Springfield, VA (1998b).

Greenwood, N. N., and A. Earnshaw, *Chemistry of the Elements*, Pergamon Press, Oxford (1989).

Hulgaard, T., and K. Dam-Johansen, "Nitrous Oxide Sampling, Analysis, and Emission Measurements from Various Combustion Systems," *Environ. Prog.*, 11, 302 (1992).

Karamchandani, P., L. Santos, I. Sykes, Y. Zhang, C. Tonne, and C. Seigneur, "Development and Evaluation of a State-of-the-Science Reactive Plume Model," *Environ. Sci. Technol.*, **34**, 870 (2000).

Khalil, M. A. K., and R. A. Rasmussen, "Nitrous Oxide from Coal-Fired Power Plants: Experiments in the Plumes," *J. Geophys. Res.*, **97**, 14645 (1992).

Linak, W. P., J. A. Mcsorley, and R. E. Hall, "Nitrous Oxide Emissions from Fossil Fuel Combustion," *J. Geophys. Res.*, **95**, 7533 (1990).

Lyon, R. K., and J. A. Cole, "Kinetic Modeling of Artifacts in the Measurement of N₂O from Combustion Sources," *Combust. Flame*, 77, 139 (1989).

Lyon, R. K., J. C. Kramlich, and J. A. Cole, "Nitrous Oxide: Sources, Sampling, and Science Policy," *Environ. Sci. Technol.*, 23, 393 (1989).

Martin, L. R., D. E. Damschen, and H. S. Judeikis, "The Reactions of Nitrogen Oxides with SO₂ in Aqueous Aerosols," *Atmos. Environ.*, **15**, 191 (1981).

Muzio, L. J., and J. C. Kramlich, "An Artifact in the Measurement of N₂O from Combustion Sources," *Geophys. Lett.*, 15, 1869 (1988).
Muzio, L. J., M. E. Teague, J. C. Kramlich, J. A. Cole, J. M. Mc-

Carthy, and R. K. Lyon, "Errors in Grab Sample Measurements of N₂O from Combustion Sources," *JAPCA*, **39**, 287 (1989).

Nguyen, K. A., M. S. Gordon, J. A. Montgomery, Jr., H. H. Michels, and D. R. Yarkony, "Theoretical Studies of Spin-Forbidden Radiationless Decay in Polyatomic Systems. II. Radiationless Decay of a-N₂O₂," J. Chem. Phys., 98, 3845 (1993).

Nguyen, K. A., M. S. Gordon, J. A. Montgomery, Jr., and H. H. Michels, "Structures, Bonding, and Energetics of N₂O₂ Isomers," *J. Phys. Chem.*, **98**, 10072 (1994).

Pires, M., and M. J. Rossi, "Kinetic and Mechanistic Aspects of the NO Oxidation by O₂ in Aqueous Phase," *Int. J. Chem. Kinet.*, **26**, 1207 (1904)

Pires, M., and M. J. Rossi, "The Heterogeneous Formation of N₂O in the Presence of Acidic Solutions: Experiments and Modeling," *Int. J. Chem. Kinet.*, **29**, 869 (1997).

Pires, M., H. van den Bergh, and M. J. Rossi, "The Heterogeneous Formation of N_2O over Bulk Condensed Phases in the Presence of SO_2 at High Humidities," *J. Atmos. Chem.*, **25**, 229 (1996).

Preto, F., E. J. Anthony, and L. Jia, "Nitrous Oxide Formation in Power Plant Plumes," *Clean Combustion Technologies*, Part A, M. da Graca Carvalho, W. A. Fivelands, F. C. Lockwood, and C. Papadopoulos, eds., Gordon & Breach, Berkshire, MA, p. 233 (1999).

Weiss, R. F., "The Temporal and Spatial Distribution of Tropospheric Nitrous Oxide," *J. Geophys. Res.*, **86**, 7185 (1981).

Appendix: Derivation of Rate Expression for N_2O Formation

Mixture of NO and SO_2 without O_2

According to Eqs. 4 and 5, the net formation rate of N_2O_2 can be given as

$$\frac{d[N_2O_2]}{dt} = k_4[NO]^2 - k_{-4}[N_2O_2] - k_5[N_2O_2][SO_2].$$
(A1)

With the pseudo-steady-state hypothesis for N_2O_2

$$\frac{d[N_2O_2]}{dt} \approx 0, \tag{A2}$$

we obtain

$$[N_2O_2] = \frac{k_4[NO]^2}{k_{-4} + k_5[SO_2]}.$$
 (A3)

The formation rate of N₂O is

$$\frac{d[N_2O]}{dt} = k_5[N_2O_2][SO_2] = \frac{k_4k_5[NO]^2[SO_2]}{k_{-4} + k_5[SO_2]}.$$
 (A4)

In the presence of O_2

Equations 13 and 14 would be operative. The net formation rate of the intermediate NO₃ can be given as

$$\frac{d[NO_3]}{dt} = k_{13}[NO][O_2] - k_{-13}[NO_3] - k_{14}[NO_3][NO].$$
(A5)

With the pseudo-steady-state assumption for NO₃, we get

$$[NO_3] = \frac{k_{13}[NO][O_2]}{k_{-12} + k_{14}[NO]}.$$
 (A6)

When water is also present, the gas phase [SO₃] in Eqs. 15 and 16 would be negligible. Applying pseudo-steady-state as-

sumptions to intermediates, for N₂O₂ we have

$$\frac{d[N_2O_2]}{dt} = k_{16}[N_2O_3][SO_2] - k_5[N_2O_2][SO_2] - k_{-4}[N_2O_2] \approx 0. \quad (A7)$$

Therefore,

$$[N_2O_2] = \frac{k_{16}[N_2O_3][SO_2]}{k_{-4} + k_5[SO_2]}.$$
 (A8)

For $[N_2O_3]$ in Eq. A8, we have

$$\frac{d[N_2O_3]}{dt} = k_{15}[N_2O_4][SO_2] - k_{16}[N_2O_3][SO_2] \approx 0.$$
 (A9)

Therefore,

$$[N_2O_3] = \frac{k_{15}}{k_{16}}[N_2O_4].$$
 (A10)

For N_2O4 in Eq. A10, we have

$$\frac{d[N_2O_4]}{dt} = k_{14}[NO_3][NO] - k_{15}[N_2O_4][SO_2] \approx 0.$$
 (A11)

From Eqs. A11 and A6, we obtain

$$[N_2O_4] = \frac{k_{13}k_{14}[NO]^2[O_2]}{k_{15}(k_{-13} + k_{14}[NO])[SO_2]}.$$
 (A12)

Accordingly, the formation rate of $[N_2O]$ under such conditions is

$$\frac{d[N_2O]}{dt} = k_5[N_2O_2][SO_2]$$

$$= \frac{k_5k_{13}k_{14}K_{15}[NO]^2[O_2][SO_2]}{(k_{-13} + k_{14}[NO])(k_{-4} + k_5[SO_2])}. (A13)$$

When the concentration of NO is low so that k_{14} [NO] $\ll k_{-13}$, the rate can be given as

$$\frac{d[N_2O]}{dt} = \frac{k_5 k_{14} K_{13} K_{15} [NO]^2 [O_2] [SO_2]}{k_{-4} + k_5 [SO_2]}.$$
 (A14)

Equation A14 predicts that the apparent reaction order with respect to SO_2 would decrease as the concentration of SO_2 increases. The dependence on $[SO_2]$ depends on the values of k_{-4} and k_5 . At large SO_2 concentrations, $k_5[SO_2] \gg k_{-4}$, the observed formation rate of N_2O would appear to be independent of SO_2 concentration.

Manuscript received Oct. 23, 2001, and revision received June 13, 2002.